Fisheries and Aquatic Sciences (Sep 2018)
Effects of incubation temperature on the embryonic viability and hatching time in Russian sturgeon (Acipenser gueldenstaedtii)
Abstract
Abstract Background Russian sturgeon (Acipenser gueldenstaedtii) is an emerging candidate species in the Korean aquaculture domain owing to its highly valued caviar. Although the embryonic development of this species was previously described, the complete image data on the morphological differentiation of developing embryos have not been yet fully available. Further, with the viewpoint of larval production in hatchery, the effects of temperature on embryonic viability and the temporal window of hatching event have not been extensively studied. Hence, the objective of this study was to provide a complete set of photographic image data on the embryogenesis and also to examine the effects of incubation temperatures on embryonic viability and hatching event in farm-bred Russian sturgeon. Results Typical characteristics of embryonic development including uneven, holoblastic cleavages with unequal blastomeres, followed by the formation of germ layer, neurulation, and organogenesis until hatching, were documented. Under different temperature conditions (12, 16, or 20 °C), viability of embryos incubated at 12 °C was significantly lower as relative to those of 16 and 20 °C incubated embryos. Hatchability of embryos was higher, and the timing of hatching event was more synchronized at 20 °C than at 12 and 16 °C. Conclusion Data from this study suggest that the incubation of Russian sturgeon embryos at 20 °C would be desirable in the hatchery practice with respect to the good hatchability of embryos and the synchronization of hatching events. Additionally, the updated image data for complete embryonic development could be a useful reference guide for not only developmental researches but also artificial propagation of Russian sturgeon in farms.
Keywords