Diagnostics (Nov 2022)

Evaluation of Hepatic Fibrosis Using Ultrasound Backscattered Radiofrequency Signals and One-Dimensional Convolutional Neural Networks

  • Yong Huang,
  • Yan Zeng,
  • Guangyu Bin,
  • Qiying Ding,
  • Shuicai Wu,
  • Dar-In Tai,
  • Po-Hsiang Tsui,
  • Zhuhuang Zhou

DOI
https://doi.org/10.3390/diagnostics12112833
Journal volume & issue
Vol. 12, no. 11
p. 2833

Abstract

Read online

The early detection of hepatic fibrosis is of critical importance. Ultrasound backscattered radiofrequency signals from the liver contain abundant information about its microstructure. We proposed a method for characterizing human hepatic fibrosis using one-dimensional convolutional neural networks (CNNs) based on ultrasound backscattered signals. The proposed CNN model was composed of four one-dimensional convolutional layers, four one-dimensional max-pooling layers, and four fully connected layers. Ultrasound radiofrequency signals collected from 230 participants (F0: 23; F1: 46; F2: 51; F3: 49; F4: 61) with a 3-MHz transducer were analyzed. Liver regions of interest (ROIs) that contained most of the liver ultrasound backscattered signals were manually delineated using B-mode images reconstructed from the backscattered signals. ROI signals were normalized and augmented by using a sliding window technique. After data augmentation, the radiofrequency signal segments were divided into training sets, validation sets and test sets at a ratio of 80%:10%:10%. In the test sets, the proposed algorithm produced an area under the receive operating characteristic curve of 0.933 (accuracy: 91.30%; sensitivity: 92.00%; specificity: 90.48%), 0.997 (accuracy: 94.29%; sensitivity: 94.74%; specificity: 93.75%), 0.818 (accuracy: 75.00%; sensitivity: 69.23%; specificity: 81.82%), and 0.934 (accuracy: 91.67%; sensitivity: 88.89%; specificity: 94.44%) for diagnosis liver fibrosis stage ≥F1, ≥F2, ≥F3, and ≥F4, respectively. Experimental results indicated that the proposed deep learning algorithm based on ultrasound backscattered signals yields a satisfying performance when diagnosing hepatic fibrosis stages. The proposed method may be used as a new quantitative ultrasound approach to characterizing hepatic fibrosis.

Keywords