Journal of Hydroinformatics (May 2023)
Improved monthly runoff time series prediction using the SOA–SVM model based on ICEEMDAN–WD decomposition
Abstract
In runoff prediction, the prediction accuracy is often affected by the non-linear and non-stationary characteristics of the runoff series. In this study, a coupled forecasting model is proposed that decomposes the original runoff series by an improved complete ensemble Empirical Mode Decomposition (EMD) (ICEEMDAN) combined with a wavelet decomposition (WD) and then forecasts the monthly runoff using a support vector machine (SVM) optimized by the seagull optimization algorithm (SOA). In this method, a series of Intrinsic Mode Function (IMF) and a Residual (Res) are obtained by decomposing the original runoff series with ICEEMDAN. The WD method is used to perform quadratic decomposition of high-frequency components decomposed by the ICEEMDAN method to make the runoff series as smooth as possible. Then the decomposed components are input into the SOA-SVM model for prediction. Finally, the prediction results of each component are superimposed and reconstructed to obtain the final monthly runoff prediction results. RMSE, Mean Absolute Percentage Error (MAPE), Nash-Sutcliffe Efficiency Coefficient (NSEC), and R are selected to evaluate the prediction results and the model is compared with SOA-SVM model, EMD-SOA-SVM model and CEEMDAN-SOA-SVM model other models. The proposed model is applied to the monthly runoff forecast of the Hongjiadu and Manwan Reservoirs. When compared with other benchmarking models, the ICEEMDAN-WD-SOA-SVM model attains the smallest Root Mean Square Error (RMSE) and MAPE and the largest NSEC and R. The ICEEMDAN-WD-SOA-SVM model has the best prediction effect, the highest prediction accuracy, and the lowest prediction error. HIGHLIGHTS The ICEEMDAN–WD model is used to decompose the original runoff series.; The proposed ICEEMDAN–WD model can effectively reduce the complexity of the runoff series.; The proposed SOA–SVM model can effectively improve the prediction accuracy of runoff series.; The proposed model can provide high prediction accuracy and consistency.;
Keywords