Horticulturae (Nov 2021)
Somatic Embryogenesis and Indirect <i>In Vitro</i> Plant Regeneration in <i>Amorphophallus konjac</i> K. Koch by One-Step Seedling Formation
Abstract
Konjac (Amorphophallus konjac K. Koch) is a well-known tuberous vegetable belonging to the important medicinal family Araceae, and the plant grows from an underground tuber. Here, we used a “one-step seedling regeneration” tissue culture system to improve the plantlet regeneration efficiency of konjac using young leaves as an explant source. In the current study, we used several sterilization methods for tuber sterilization. Moreover, various plant growth regulator combinations were applied to achieve efficient somatic embryogenesis and plantlet regeneration. Our results showed that the optimal tuber sterilization was method C (75% alcohol for 15 s + 0.1% HgCl2 for 15 min + washing by double-sterilized water three times). Three types of embryogenic calli were induced on full-strength Murashige and Skoog (MS) basal medium supplemented with 0.5 mg/L of 6-benzylaminopurine (6-BA), 0.5 mg/L of naphthaleneacetic acid (NAA), 1.0 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D), and 30 g/L of sucrose. Of the three types of embryogenic calli, only type Ⅲ further regenerated plantlets, with a callus induction rate of 55.73% and a seedling induction rate of 92.73%. This suggests that the addition of the above hormones gives the optimal callus induction. The proliferation rate achieved was 38% on the MS basal medium containing 1.0 mg/L of 6-BA, 1.0 mg/L of indolebutyric acid (IBA), 0.2 mg/L of kinetin (KT), and 50 g/L of sucrose. The one-step seedling formation achieved in MS medium contained 2.0 mg/L of 6-BA, 0.5 mg/L of NAA, 0.1 mg/L of gibberellic acid (GA3), and 30 g/L of sucrose, and the number of regenerated shoots per explants was 6 ± 2. Therefore, we establish a one-step seedling regeneration system through indirect plant regeneration, which shortens the time for konjac in vitro regeneration, significantly increased the micropropagation efficiency, and decreased the cost of the konjac tissue culture.
Keywords