Mathematics (Nov 2022)

A Class of Semilinear Parabolic Problems and Analytic Semigroups

  • Kazuaki Taira

DOI
https://doi.org/10.3390/math10224381
Journal volume & issue
Vol. 10, no. 22
p. 4381

Abstract

Read online

(1) Background: This paper is devoted to the study of a class of semilinear initial boundary value problems of parabolic type. (2) Methods: We make use of fractional powers of analytic semigroups and the interpolation theory of compact linear operators due to Lions–Peetre. (3) Results: We give a functional analytic proof of the C2 compactness of a bounded regular solution orbit for semilinear parabolic problems with Dirichlet, Neumann and Robin boundary conditions. (4) Conclusions: As an application, we study the dynamics of a population inhabiting a strongly heterogeneous environment that is modeled by a class of diffusive logistic equations with Dirichlet and Neumann boundary conditions.

Keywords