Heliyon (Aug 2022)

Smart apparel using nano graphitic carbon nitride/PVA in a cotton cloth for military application

  • Srimathi Krishnaswamy,
  • Puspamitra Panigrahi,
  • Praseetha Prabhakaran Kala,
  • Sharon Sofini,
  • Ganapathi Subramanian Nagarajan

Journal volume & issue
Vol. 8, no. 8
p. e10345

Abstract

Read online

An eco-friendly, low-cost smart attire was made of metal-free graphitic carbon nitride (GCN) as a semiconductor material in a biodegradable synthetic polymer (polyvinyl alcohol) and cotton material. Various concentrations such as 0.04, 0.08, 0.12, 0.16, and 0.2 weight percentage of GCN is entrenched in PVA. UV absorption spectra displayed two peaks, one matching PVA (317 nm) and the other excitonic peak of GCN (390 nm).0.2% GCN in PVA showed a low bandgap (2.84 eV) harnessing maximum solar light. Due to the charge transfer mechanism, enhanced blue emission at 450 nm was observed for the higher concentration of graphitic carbon nitride. Due to more defect centers of higher weight percentage of GCN, higher electrical conductivity (7.6462 × 10−3 S/cm) and optical conductivity (0.113 S) were noticed. Due to the higher conductivity of 5GCN, it was embedded with cotton fabric. The fabricated smart apparel can be used to manufacture flexible, lightweight, eco-friendly optoelectronic devices. Further, according to literature, GCN possesses high antibacterial activity, hence it can serve as clothing for the military and medical community.

Keywords