Mathematics (Aug 2020)
Estimation of Non-Linear Parameters with Data Collected Using Respondent-Driven Sampling
Abstract
Respondent-driven sampling (RDS) is a snowball-type sampling method used to survey hidden populations, that is, those that lack a sampling frame. In this work, we consider the problem of regression modeling and association for continuous RDS data. We propose a new sample weight method for estimating non-linear parameters such as the covariance and the correlation coefficient. We also estimate the variances of the proposed estimators. As an illustration, we performed a simulation study and an application to an ethnic example. The proposed estimators are consistent and asymptotically unbiased. We discuss the applicability of the method as well as future research.
Keywords