Current Issues in Molecular Biology (Oct 2023)

Lactic Acid Bacteria-Derived Exopolysaccharides Mitigate the Oxidative Response via the NRF2-KEAP1 Pathway in PC12 Cells

  • Seda Şirin

DOI
https://doi.org/10.3390/cimb45100510
Journal volume & issue
Vol. 45, no. 10
pp. 8071 – 8090

Abstract

Read online

Parabiotics, including L-EPSs, have been administered to patients with neurodegenerative disorders. However, the antioxidant properties of L-EPSs against H2O2-induced oxidative stress in PC12 cells have not been studied. Herein, we aimed to investigate the antioxidant properties of the L-EPSs, their plausible targets, and their mechanism of action. We first determined the amount of L-EPSs in Lactobacillus delbrueckii ssp. bulgaricus B3 and Lactiplantibacillus plantarum GD2 using spectrophotometry. Afterwards, we studied their effects on TDH, TOS/TAS, antioxidant enzyme activities, and intracellular ROS level. Finally, we used qRT-PCR and ELISA to determine the effects of L-EPSs on the NRF2-KEAP1 pathway. According to our results, the L-EPS groups exhibited significantly higher total thiol activity, native thiol activity, disulfide activity, TAS levels, antioxidant enzyme levels, and gene expression levels (GCLC, HO-1, NRF2, and NQO1) than did the H2O2 group. Additionally, the L-EPS groups caused significant reductions in TOS levels and KEAP1 gene expression levels compared with those in the H2O2 group. Our results indicate that H2O2-induced oxidative stress was modified by L-EPSs. Thus, we revealed that L-EPSs, which regulate H2O2-induced oxidative stress, could have applications in the field of neurochemistry.

Keywords