EPJ Web of Conferences (Apr 2011)
Quark Number Scaling in Fluid Dynamics and Hadronization via Quarkyonic Matter
Abstract
NCQ scaling of elliptic flow is studied in a non-equilibrium hadronization and freeze-out model from ideal, deconfined and chirally symmetric Quark Gluon Plasma (QGP), to final non-interacting hadrons. In this transition the quarks gain constituent quark mass while the background Bag-field breaks up. The constituent quarks then recombine into simplified hadron states, while chemical, thermal and flow equilibrium break down. Then the resulting temperatures and flow velocities of baryons and mesons will be different. In a simplified model, we reproduce the constituent quark number scaling.