International Journal of Molecular Sciences (Dec 2018)

Tunicamycin-Induced ER Stress is Accompanied with Oxidative Stress via Abrogation of Sulfur Amino Acids Metabolism in the Liver

  • Sou Hyun Kim,
  • Do-young Kwon,
  • Jae-Hwan Kwak,
  • Seunghyun Lee,
  • Yun-Hee Lee,
  • Jieun Yun,
  • Tae Gen Son,
  • Young-Suk Jung

DOI
https://doi.org/10.3390/ijms19124114
Journal volume & issue
Vol. 19, no. 12
p. 4114

Abstract

Read online

Endoplasmic reticulum (ER) stress is involved in non-alcoholic fatty liver disease (NAFLD), but the relationship between oxidative stress, another well-known risk factor of NAFLD, and ER stress has yet to be elucidated. In this study, we treated mice with tunicamycin (TM) (2 mg/kg body weight) for 48 h to induce ER stress in the liver and examined the metabolic pathway that synthesizes the endogenous antioxidant, glutathione (GSH). Tunicamycin (TM) treatment significantly increased mRNA levels of CHOP and GRP78, and induced lipid accumulation in the liver. Lipid peroxidation in the liver tissue also increased from TM treatment (CON vs. TM; 3.0 ± 1.8 vs. 11.1 ± 0.8 nmol MDA/g liver, p < 0.001), which reflects an imbalance between the generation of reactive substances and antioxidant capacity. To examine the involvement of GSH synthetic pathway, we determined the metabolomic changes of sulfur amino acids in the liver. TM significantly decreased hepatic S-adenosylmethionine concentration in the methionine cycle. The levels of cysteine in the liver were increased, while taurine concentration was maintained and GSH levels profoundly decreased (CON vs. TM; 8.7 ± 1.5 vs. 5.4 ± 0.9 µmol GSH/g liver, p < 0.001). These results suggest that abnormal cysteine metabolism by TM treatment resulted in a decrease in GSH, followed by an increase in oxidative stress in the liver. In HepG2 cells, decreased GSH levels were examined by TM treatment in a dose dependent manner. Furthermore, pretreatment with TM in HepG2 cells potentiated oxidative cell death, by exacerbating the effects of tert-butyl hydroperoxide. In conclusion, TM-induced ER stress was accompanied by oxidative stress by reducing the GSH synthesis, which made the liver more susceptible to oxidative stress.

Keywords