Polymers (Sep 2020)

Cyclic Peptide Inhibitors of the Tsg101 UEV Protein Interactions Refined through Global Docking and Gaussian Accelerated Molecular Dynamics Simulations

  • Wen-Wei Lin,
  • Yu-Jen Wang,
  • Cheng-Wen Ko,
  • Tain-Lu Cheng,
  • Yeng-Tseng Wang

DOI
https://doi.org/10.3390/polym12102235
Journal volume & issue
Vol. 12, no. 10
p. 2235

Abstract

Read online

Tsg101 UEV domain proteins are potential targets for virus infection therapy, especially for HIV and Ebola viruses. Peptides are key in curbing virus transmission, and cyclic peptides have a greater survival time than their linear peptides. To date, the accurate prediction of cyclic peptide-protein receptors binding conformations still is challenging because of high peptide flexibility. Here, a useful approach combined the global peptide docking, Gaussian accelerated molecular dynamics (GaMD), two-dimensional (2D) potential of mean force (PMF), normal molecular dynamics (cMD), and solvated interaction energy (SIE) techniques. Then we used this approach to investigate the binding conformations of UEV domain proteins with three cyclic peptides inhibitors. We reported the possible cyclic peptide-UEV domain protein binding conformations via 2D PMF free energy profiles and SIE free energy calculations. The residues Trp145, Tyr147, and Trp148 of the native cyclic peptide (CP1) indeed play essential roles in the cyclic peptides-UEV domain proteins interactions. Our findings might increase the accuracy of cyclic peptide-protein conformational prediction, which may facilitate cyclic peptide inhibitor design. Our approach is expected to further aid in addressing the challenges in cyclic peptide inhibitor design.

Keywords