Cell Reports (Jun 2020)

Counter Regulation of Spic by NF-κB and STAT Signaling Controls Inflammation and Iron Metabolism in Macrophages

  • Zahidul Alam,
  • Samir Devalaraja,
  • Minghong Li,
  • Tsun Ki Jerrick To,
  • Ian W. Folkert,
  • Erick Mitchell-Velasquez,
  • Mai T. Dang,
  • Patricia Young,
  • Christopher J. Wilbur,
  • Michael A. Silverman,
  • Xinyuan Li,
  • Youhai H. Chen,
  • Paul T. Hernandez,
  • Aritra Bhattacharyya,
  • Mallar Bhattacharya,
  • Matthew H. Levine,
  • Malay Haldar

Journal volume & issue
Vol. 31, no. 13
p. 107825

Abstract

Read online

Summary: Activated macrophages must carefully calibrate their inflammatory responses to balance efficient pathogen control with inflammation-mediated tissue damage, but the molecular underpinnings of this “balancing act” remain unclear. Using genetically engineered mouse models and primary macrophage cultures, we show that Toll-like receptor (TLR) signaling induces the expression of the transcription factor Spic selectively in patrolling monocytes and tissue macrophages by a nuclear factor κB (NF-κB)-dependent mechanism. Functionally, Spic downregulates pro-inflammatory cytokines and promotes iron efflux by regulating ferroportin expression in activated macrophages. Notably, interferon-gamma blocks Spic expression in a STAT1-dependent manner. High levels of interferon-gamma are indicative of ongoing infection, and in its absence, activated macrophages appear to engage a “default” Spic-dependent anti-inflammatory pathway. We also provide evidence for the engagement of this pathway in sterile inflammation. Taken together, our findings uncover a pathway wherein counter-regulation of Spic by NF-κB and STATs attune inflammatory responses and iron metabolism in macrophages.

Keywords