International Journal of Molecular Sciences (Sep 2021)

Study on Maximum Specific Loss Power in Fe<sub>3</sub>O<sub>4</sub> Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia

  • Costica Caizer,
  • Isabela Simona Caizer

DOI
https://doi.org/10.3390/ijms221810071
Journal volume & issue
Vol. 22, no. 18
p. 10071

Abstract

Read online

Different chemical agents are used for the biocompatibility and/or functionality of the nanoparticles used in magnetic hyperthermia to reduce or even eliminate cellular toxicity and to limit the interaction between them (van der Waals and magnetic dipolar interactions), with highly beneficial effects on the efficiency of magnetic hyperthermia in cancer therapy. In this paper we propose an innovative strategy for the biocompatibility of these nanoparticles using gamma-cyclodextrins (γ-CDs) to decorate the surface of magnetite (Fe3O4) nanoparticles. The influence of the biocompatible organic layer of cyclodextrins, from the surface of Fe3O4 ferrimagnetic nanoparticles, on the maximum specific loss power in superparamagnetic hyperthermia, is presented and analyzed in detail in this paper. Furthermore, our study shows the optimum conditions in which the magnetic nanoparticles covered with gamma-cyclodextrin (Fe3O4–γ-CDs) can be utilized in superparamagnetic hyperthermia for an alternative cancer therapy with higher efficiency in destroying tumoral cells and eliminating cellular toxicity.

Keywords