Journal of Translational Medicine (Apr 2012)
Ribonucleotide reductase inhibition restores platinum-sensitivity in platinum-resistant ovarian cancer: a Gynecologic Oncology Group Study
Abstract
Abstract Background The potent ribonucleotide reductase (RNR) inhibitor 3-aminopyridine-2-carboxyaldehyde-thiosemicarbazone (3-AP) was tested as a chemosensitizer for restored cisplatin-mediated cytotoxicity in platinum-resistant ovarian cancer. Methods Preclinical in vitro platinum-resistant ovarian cancer cell survival, RNR activity, and DNA damage assays were done after cisplatin or cisplatin plus 3-AP treatments. Six women with platinum-resistant ovarian cancer underwent four-day 3-AP (96 mg/m2, day one to four) and cisplatin (25 mg/m2, day two and three) infusions every 21 days until disease progression or adverse effects prohibited further therapy. Pre-therapy ovarian cancer tissues were analyzed by immunohistochemistry for RNR subunit expression as an indicator of cisplatin plus 3-AP treatment response. Results 3-AP preceding cisplatin exposure in platinum-resistant ovarian cancer cells was not as effective as sequencing cisplatin plus 3-AP together in cell survival assays. Platinum-mediated DNA damage (i.e., γH2AX foci) resolved quickly after cisplatin-alone or 3-AP preceding cisplatin exposure, but persisted after a cisplatin plus 3-AP sequence. On trial, 25 four-day overlapping 3-AP and cisplatin cycles were administered to six women (median 4.2 cycles per patient). 3-AP-related methemoglobinemia (range seven to 10%) occurred in two (33%) of six women, halting trial accrual. Conclusions When sequenced cisplatin plus 3-AP, RNR inhibition restored platinum-sensitivity in platinum-resistant ovarian cancers. 3-AP (96 mg/m2) infusions produced modest methemoglobinemia, the expected consequence of ribonucleotide reductase inhibitors disrupting collateral proteins containing iron. Trial registry ClinicalTrials.gov NCT00081276
Keywords