Atmosphere (Mar 2019)
PM2.5 Pollution in Xingtai, China: Chemical Characteristics, Source Apportionment, and Emission Control Measures
Abstract
Beijing-Tianjin-Hebei (BTH) and its surrounding areas are one of the most polluted regions in China. Xingtai, as a heavy industrial city of BTH and its surrounding areas, has been experiencing a severe PM2.5 pollution in recent years, characterized by extremely high concentrations of PM2.5. In 2014, PM2.5 mass concentrations monitored by online instruments in urban areas of Xingtai were 116, 77, 128, and 200 µg m−3 in spring, summer, autumn and winter, respectively, with annually average concentrations of 130 µg m−3 exhibiting 3.7 times higher than National Ambient Air Quality Standard (NAAQS) value for PM2.5 (35 µg m−3). To identify PM2.5 emission sources, ambient PM2.5 samples were collected during both cold and warm periods in 2014 in urban areas of Xingtai. Organic carbon (OC), sulfate, nitrate, ammonium and elemental carbon (EC) were the dominant components of PM2.5, accounting for 13%, 11%, 12%, 11% and 8% in the cold period, respectively, and 11%, 12%, 9%, 6%, and 5% in the warm period, respectively. Source apportionment results indicated that coal combustion (24.4%) was the largest PM2.5 emission source, followed by secondary sulfate (22.2%), secondary nitrate (18.4%), vehicle exhaust dust (12.4%), fugitive dust (9.7%), construction dust (5.5%), soil dust (3.4%) and metallurgy dust (1.6%). Based on PM2.5 source apportionment results, some emission control measures, such as replacing bulk coal with clean energy sources, controlling coal consumption by coal-fired boiler upgrades, halting operations of unlicensed small polluters, and controlling fugitive and VOCs emission, were proposed to be implemented in order to improve Xingtai’s ambient air quality.
Keywords