A central hallmark of cancer cells is the reprogramming of cellular metabolism to meet the bioenergetic and biosynthetic demands of malignant growth. Here, we report that the miR-17∼92 microRNA (miRNA) cluster is an oncogenic driver of tumor metabolic reprogramming. Loss of miR-17∼92 in Myc+ tumor cells leads to a global decrease in tumor cell metabolism, affecting both glycolytic and mitochondrial metabolism, whereas increased miR-17∼92 expression is sufficient to drive increased nutrient usage by tumor cells. We mapped the metabolic control element of miR-17∼92 to the miR-17 seed family, which influences cellular metabolism and mammalian target of rapamycin complex 1 (mTORC1) signaling through negative regulation of the LKB1 tumor suppressor. miR-17-dependent tuning of LKB1 levels regulates both the metabolic potential of Myc+ lymphomas and tumor growth in vivo. Our results establish metabolic reprogramming as a central function of the oncogenic miR-17∼92 miRNA cluster that drives the progression of MYC-dependent tumors.