Journal of Marine Science and Engineering (Jul 2022)

Variable Natural Frequency Damper for Minimizing Response of Offshore Wind Turbine: Principle Verification through Analysis of Controllable Natural Frequencies

  • Young-Suk You,
  • Ka-Young Song,
  • Min-Young Sun

DOI
https://doi.org/10.3390/jmse10070983
Journal volume & issue
Vol. 10, no. 7
p. 983

Abstract

Read online

Resonance causes extreme stress, acceleration of fatigue, and reduction in lifespan of offshore wind structures. The main factors that cause resonance are environmental loads such as wind and waves, and dynamic loads caused by rotor movement. Estimation of the natural frequency at the design stage is highly uncertain, and natural frequency changes occur due to various factors during long-term operation. Therefore, it is important to ensure structural safety from resonance through a vibration-monitoring system or an additional damper. In this study, the effect of seawater existing inside the substructure on the natural frequency of the structure was dealt with. The natural frequency estimation equation for a fixed offshore wind structure was derived with the “inner fluid simplification assumption”. The finite element modal analysis was performed to verify the principle of Variable Natural Frequency Damper (VNFD), a system that controls the natural frequency of offshore wind structures through a pump, and to find the range of natural frequency control. As a result, interior fluid affects the natural frequency of the wind turbine support structure. Specifically, the variable natural frequency range was very low, at about 0.027% for the monopile model at a depth of 10 m, but increased rapidly to about 3.66% at a depth of 70 m. Furthermore, when estimating the natural frequency of a fixed offshore wind turbine in deep water without consideration of interior fluid, the estimates can be higher than with consideration of it.

Keywords