Graphical Models (Oct 2023)
Non-homogeneous denoising for virtual reality in real-time path tracing rendering
Abstract
Real time Path-tracing is becoming an important approach for the future of games, digital entertainment, and virtual reality applications that require realism and immersive environments. Among different possible optimizations, denoising Monte Carlo rendered images is necessary in low sampling densities. When dealing with Virtual Reality devices, other possibilities can also be considered, such as foveated rendering techniques. Hence, this work proposes a novel and promising rendering pipeline for denoising a real-time path-traced application in a dual-screen system such as head-mounted display (HMD) devices. Therefore, we leverage characteristics of the foveal vision by computing G-Buffers with the features of the scene and a buffer with the foveated distribution for both left and right screens. Later, we path trace the image within the coordinates buffer generating only a few initial rays per selected pixel, and reconstruct the noisy image output with a novel non-homogeneous denoiser that accounts for the pixel distribution. Our experiments showed that this proposed rendering pipeline could achieve a speedup factor up to 1.35 compared to one without our optimizations.