Bio-Protocol (Apr 2022)
High Throughput Blood-brain Barrier Organoid Generation and Assessment of Receptor-Mediated Antibody Transcytosis
Abstract
Targeting receptor-mediated transcytosis (RMT) is a successful strategy for drug delivery of biologic agents across the blood-brain barrier (BBB). The recent development of human BBB organoid models is a major advancement to help characterize the mechanisms of RMT and thus accelerate the design of brain delivery technologies. BBB organoids exhibit self-organization, which resembles the architecture of the neurovascular unit, and low paracellular permeability, due to the formation of tight junctions between endothelial cells. However, current methods of organoid generation have low throughput, exhibit substantial heterogeneity across experiments, and require extensive manual handling. These limitations prevent the use of BBB organoids as a screening tool for discovery and optimization of therapeutic molecules. In this protocol, we use hydrogel-based arrays to generate human BBB organoids, with a 35-fold increase in organoid yield as compared to previous protocols using 96-well plates. We incubate BBB organoid arrays with monoclonal antibody-based constructs and use a custom semi-automated imaging assay to assess RMT within the organoid core. The experimental and analytical tools described in this protocol provide a scalable platform that can be incorporated in the early stages of drug discovery to accelerate the development and optimization of brain delivery technologies to cross the BBB.