Corrosion Communications (Jun 2022)

Tailoring hydrogen embrittlement resistance of pure Ni by grain boundary engineering

  • Qingqing Sun,
  • Jinhua Han,
  • Jiaxing Li,
  • Fahe Cao,
  • Shuai Wang

Journal volume & issue
Vol. 6
pp. 48 – 51

Abstract

Read online

By using thermo-mechanical processing, 99.996 wt.% pure Ni with different grain boundary characteristics were fabricated (Sample #1, 700 ℃ × 10 h + cold rolling reduction 50%+ 650 ℃ × 2 h; Sample #2, 700 ℃ × 10 h + cold rolling reduction 50%+ 900 ℃ × 5 min). Hydrogen embrittlement sensitivity of the two samples was determined by using high-pressure hydrogen charging, low strain rate tensile test and SEM fractography. Compared with Sample #1, hydrogen embrittlement index of Sample #2 increased from 0.52 to 0.71. The effects of grain size, grain boundary type and grain boundary curviness on hydrogen embrittlement of pure Ni were discussed. The results indicate that: 1) special grain boundaries including twin grain boundaries may have a marginal effect on tailoring hydrogen embrittlement resistance in pure Ni; 2) increasing grain boundary curviness is an effective way to improve hydrogen embrittlement resistance of Ni.

Keywords