Nanomaterials (Feb 2022)

Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells

  • Meenal Deo,
  • Alexander Möllmann,
  • Jinane Haddad,
  • Feray Ünlü,
  • Ashish Kulkarni,
  • Maning Liu,
  • Yasuhiro Tachibana,
  • Daniel Stadler,
  • Aman Bhardwaj,
  • Tim Ludwig,
  • Thomas Kirchartz,
  • Sanjay Mathur

DOI
https://doi.org/10.3390/nano12050780
Journal volume & issue
Vol. 12, no. 5
p. 780

Abstract

Read online

Electron transporting layers facilitating electron extraction and suppressing hole recombination at the cathode are crucial components in any thin-film solar cell geometry, including that of metal–halide perovskite solar cells. Amorphous tantalum oxide (Ta2O5) deposited by spin coating was explored as an electron transport material for perovskite solar cells, achieving power conversion efficiency (PCE) up to ~14%. Ultraviolet photoelectron spectroscopy (UPS) measurements revealed that the extraction of photogenerated electrons is facilitated due to proper alignment of bandgap energies. Steady-state photoluminescence spectroscopy (PL) verified efficient charge transport from perovskite absorber film to thin Ta2O5 layer. Our findings suggest that tantalum oxide as an n-type semiconductor with a calculated carrier density of ~7 × 1018/cm3 in amorphous Ta2O5 films, is a potentially competitive candidate for an electron transport material in perovskite solar cells.

Keywords