Scientific Reports (Oct 2019)
SMRT sequencing of full-length transcriptome of seagrasses Zostera japonica
Abstract
Abstract Seagrass meadows are among the four most productive marine ecosystems in the world. Zostera japonica (Z. japonica) is the most widely distributed species of seagrass in China. However, there is no reference genome or transcriptome available for Z. japonica, impeding progress in functional genomic and molecular ecology studies in this species. Temperature is the main factor that controls the distribution and growth of seagrass around the world, yet how seagrass responds to heat stress remains poorly understood due to the lack of genomic and transcriptomic data. In this study, we applied a combination of second- and third-generation sequencing technologies to sequence full-length transcriptomes of Z. japonica. In total, we obtained 58,134 uniform transcripts, which included 46,070 high-quality full-length transcript sequences. We identified 15,411 simple sequence repeats, 258 long non-coding RNAs and 28,038 open reading frames. Exposure to heat elicited a complex transcriptional response in genes involved in posttranslational modification, protein turnover and chaperones. Overall, our study provides the first large-scale full-length trascriptome in Zostera japonica, allowing for structural, functional and comparative genomics studies in this important seagrass species. Although previous studies have focused specifically on heat shock proteins, we found that examination of other heat stress related genes is important for studying response to heat stress in seagrass. This study provides a genetic resource for the discovery of genes related to heat stress tolerance in this species. Our transcriptome can be further utilized in future studies to understand the molecular adaptation to heat stress in Zostera japonica.