Sensors (Dec 2022)

A QoS-Adaptive Interference Alignment Technique for In-Band Full-Duplex Multi-Antenna Cellular Networks

  • Ki-Hun Lee,
  • Gyudong Park,
  • Bang Chul Jung

DOI
https://doi.org/10.3390/s22239417
Journal volume & issue
Vol. 22, no. 23
p. 9417

Abstract

Read online

In this paper, we propose a novel interference alignment (IA) technique for an in-band full-duplex (IBFD) multiple-input multiple-output (MIMO) cellular network where a base station (BS) and user equipment (UE) are equipped with multiple antennas, and the local channel state information (CSI) is available at all nodes. Considering a practical IBFD MIMO cellular network, it is assumed that only the BS operates with full-duplex (FD) communication while UE operate in half-duplex (HD) mode. These IBFD networks introduce a new type of interference called cross-link interference (CLI), in which uplink UE affects downlink UE. The proposed IA technique consists of two symmetric IA schemes according to the number of antennas in the uplink and downlink UE, and both schemes effectively mitigate CLI in the IBFD MIMO network. It is worth noting that both IA schemes are adaptively applicable according to the network’s quality-of-service (QoS) requirements, such as uplink and downlink traffic demands. Furthermore, we theoretically characterize and prove the achievable sum-degrees-of-freedom (DoF) of the proposed IA technique. Simulation results show that the proposed IA technique significantly improves the sum rate performance compared to conventional HD communications (multi-user MIMO) while achieving the same achievable DoF as the interference-free IBFD MIMO network.

Keywords