Journal of Clinical and Diagnostic Research (Sep 2014)
Photoelastic Stress Analysis in Prosthetic Implants of Different Diameters: Mini, Narrow, Standard or Wide
Abstract
Purpose: This study investigated the biomechanical behavior of screwed partial fixed prosthesis supported by implants with different diameters (2.5 mm; 3.3 mm and 3.75 mm) by using a photoelastic analysis. Materials and Methods: Six photoelastic models were fabricated in PL-2 resin as single crowns or splinted 3-unit piece. Models were positioned in a circular polariscope and 100-N axial and oblique (45 degrees) loads were applied in the occlusal surface of the crowns by using a universal testing machine (EMIC). The stresses were photographically recorded and qualitatively analyzed using a software (Adobe Photoshop). Results: Under axial loading, the number of fringes was inversely proportional to the diameter of the implants in the single crown models. In the splinted 3-unit piece, the 3.75-mm implant promoted lower number of fringes regardless of loading area application. Under oblique loading, a slight increase of fringes number was observed for all groups. Conclusion: The standard implant diameter promoted better stress distribution than the narrow and mini diameter implants. Additionally, the splinted crowns showed a more uniform stress distribution.
Keywords