PLoS Pathogens (Jun 2021)

Molecular ruler of the attachment organelle in Mycoplasma pneumoniae

  • Daisuke Nakane,
  • Kohki Murata,
  • Tsuyoshi Kenri,
  • Keigo Shibayama,
  • Takayuki Nishizaka

Journal volume & issue
Vol. 17, no. 6

Abstract

Read online

Length control is a fundamental requirement for molecular architecture. Even small wall-less bacteria have specially developed macro-molecular structures to support their survival. Mycoplasma pneumoniae, a human pathogen, forms a polar extension called an attachment organelle, which mediates cell division, cytadherence, and cell movement at host cell surface. This characteristic ultrastructure has a constant size of 250–300 nm, but its design principle remains unclear. In this study, we constructed several mutants by genetic manipulation to increase or decrease coiled-coil regions of HMW2, a major component protein of 200 kDa aligned in parallel along the cell axis. HMW2-engineered mutants produced both long and short attachment organelles, which we quantified by transmission electron microscopy and fluorescent microscopy with nano-meter precision. This simple design of HMW2 acting as a molecular ruler for the attachment organelle should provide an insight into bacterial cellular organization and its function for their parasitic lifestyles. Author summary Mycoplasma pneumoniae, a pathogen of “walking pneumonia”, have a membrane protrusion with a precise length of 250–300 nm specially developed to support their parasitic lifestyles. To date, however, there has been no report focusing on the potential length-control mechanisms of this characteristic architecture called an attachment organelle. Here, we found that the coiled-coil domains of the 200-kDa protein HMW2 are aligned in parallel along the cell axis, and acts as a molecular ruler by the assembly into a physical scaffold. The molecular ruler could be engineered by genetic modification to produce both longer and shorter attachment organelle. The analyses of the length-controlled mutant highlight a simple design principle of cellular organization in a small bacterium.