Frontiers in Plant Science (Feb 2020)

Natural Selection Towards Wild-Type in Composite Cross Populations of Winter Wheat

  • Samuel Knapp,
  • Samuel Knapp,
  • Thomas F. Döring,
  • Thomas F. Döring,
  • Hannah E. Jones,
  • John Snape,
  • Luzie U. Wingen,
  • Martin S. Wolfe,
  • Michelle Leverington-Waite,
  • Simon Griffiths

DOI
https://doi.org/10.3389/fpls.2019.01757
Journal volume & issue
Vol. 10

Abstract

Read online

Most of our crops are grown in monoculture with single genotypes grown over wide acreage. An alternative approach, where segregating populations are used as crops, is an exciting possibility, but outcomes of natural selection upon this type of crop are not well understood. We tracked allelic frequency changes in evolving composite cross populations of wheat grown over 10 generations under organic and conventional farming. At three generations, each population was genotyped with 19 SSR and 8 SNP markers. The latter were diagnostic for major functional genes. Gene diversity was constant at SSR markers but decreased over time for SNP markers. Population differentiation between the four locations could not be detected, suggesting that organic vs. non-organic crop management did not drive allele frequency changes. However, we did see changes for genes controlling plant height and phenology in all populations independently and consistently. We interpret these changes as the result of a consistent natural selection towards wild-type. Independent selection for alleles that are associated with plant height suggests that competition for light was central, resulting in the predominance of stronger intraspecific competitors, and highlighting a potential trade-off between individual and population performance.

Keywords