PLoS ONE (Jan 2021)

Dynamic physiological responses in obese and non-obese adults submitted to cardiopulmonary exercise test.

  • Bárbara de Barros Gonze,
  • Thatiane Lopes Valentim Di Paschoale Ostolin,
  • Alan Carlos Brisola Barbosa,
  • Agatha Caveda Matheus,
  • Evandro Fornias Sperandio,
  • Antônio Ricardo de Toledo Gagliardi,
  • Rodolfo Leite Arantes,
  • Marcello Romiti,
  • Victor Zuniga Dourado

DOI
https://doi.org/10.1371/journal.pone.0255724
Journal volume & issue
Vol. 16, no. 8
p. e0255724

Abstract

Read online

PurposeObese individuals have reduced performance in cardiopulmonary exercise testing (CPET), mainly considering peak values of variables such as oxygen uptake ([Formula: see text]), carbon dioxide production ([Formula: see text]), tidal volume (Vt), minute ventilation ([Formula: see text]) and heart rate (HR). The CPET interpretation and prognostic value can be improved through submaximal ratios analysis of key variables like [Formula: see text], [Formula: see text], [Formula: see text] [Formula: see text] and oxygen uptake efficiency slope (OUES). The obesity influence on these responses has not yet been investigated. Our purpose was to evaluate the influence of adulthood obesity on maximal and submaximal physiological responses during CPET, emphasizing the analysis of submaximal dynamic variables.MethodsWe analyzed 1,594 CPETs of adults (755 obese participants, Body Mass Index ≥ 30 kg/m2) and compared the obtained variables among non-obese (normal weight and overweight) and obese groups (obesity classes I, II and III) through multivariate covariance analyses.ResultObesity influenced the majority of evaluated maximal and submaximal responses with worsened CPET performance. Cardiovascular, metabolic and gas exchange variables were the most influenced by obesity. Other maximal and submaximal responses were altered only in morbidly obese. Only a few cardiovascular and ventilatory variables presented inconsistent results. Additionally, Vtmax, [Formula: see text], Vt/Inspiratory Capacity, Vt/Forced Vital Capacity, Lowest [Formula: see text], [Formula: see text], and the y-intercepts of [Formula: see text] did not significantly differ regardless of obesity.ConclusionObesity expressively influences the majority of CPET variables. However, the prognostic values of the main ventilatory efficiency responses remain unchanged. These dynamic responses are not dependent on maximum effort and may be useful in detecting incipient ventilatory disorder. Our results present great practical applicability in identifying exercise limitation, regardless of overweight and obesity.