Towards spatial predictions of disease transmission risk: classical scrapie spill-over from domestic small ruminants to wild cervids
N. Mouta,
N. Mouta,
N. Mouta,
L. Orge,
L. Orge,
J. Vicente,
J. Vicente,
J. Vicente,
J. A. Cabral,
J. Aranha,
J. Carvalho,
R. T. Torres,
J. Pereira,
R. Carvalho,
M. A. Pires,
M. A. Pires,
M. Vieira-Pinto,
M. Vieira-Pinto,
M. Vieira-Pinto
Affiliations
N. Mouta
Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
N. Mouta
CIBIO/InBIO – Research Centre in Biodiversity and Genetic Resources, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 7, 4485-661, Vairão, Portugal
N. Mouta
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
L. Orge
Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal
L. Orge
Animal and Veterinary Research Centre (CECAV), and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
J. Vicente
Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
J. Vicente
CIBIO/InBIO – Research Centre in Biodiversity and Genetic Resources, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 7, 4485-661, Vairão, Portugal
J. Vicente
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
J. A. Cabral
Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
J. Aranha
Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
J. Carvalho
Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
R. T. Torres
Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
J. Pereira
Department of Genetics and Biotechnology, School of Life and Environmental Sciences (ECVA), UTAD, Vila Real, Portugal
R. Carvalho
Direção Geral de Alimentação e Veterinária (DGAV), Division of Epidemiology and Animal Health, Directorate of Animal Protection Services, Lisbon, Portugal
M. A. Pires
Animal and Veterinary Research Centre (CECAV), and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
M. A. Pires
Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), UTAD, Vila Real, Portugal
M. Vieira-Pinto
Animal and Veterinary Research Centre (CECAV), and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
M. Vieira-Pinto
Direção Geral de Alimentação e Veterinária (DGAV), Division of Epidemiology and Animal Health, Directorate of Animal Protection Services, Lisbon, Portugal
M. Vieira-Pinto
Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), UTAD, Vila Real, Portugal
Spatial epidemiology tools play a critical role in effectively allocating resources to curb the spread of animal diseases. This study focuses on classical scrapie (CS), an animal prion disease identified in Portugal, which infects small ruminant flocks and has been shown to be experimentally transmissible to wild cervids. Utilising remote sensing technologies and semi-automatic classification models, we aimed to evaluate the risk of interspecies prion transmission from domestic small ruminants to wild cervids (hosts). To achieve this, we gathered data related to hosts and infected small ruminant flocks. Furthermore, we collected and processed freely available, medium-resolution satellite imagery to derive vegetative and biophysical spectral indices capable of representing the primary habitat features. By employing a pixel-based species distribution model, we integrated the compiled geographical distribution data and spectral data with five supervised classification algorithms (random forest, classification tree analysis, artificial neural network, generalised linear model, and generalised additive model). The consensus map allowed accurate predictions of spatialised regions exhibiting spectral characteristics similar to where CS and its hosts were initially identified. By overlapping suitable territories for disease and host occurrence, we created a spatially explicit tool that assesses the risk of prion spill-over from domestic small ruminants to wild cervids. The described methodology is highly replicable and freely accessible, thus emphasising its practical utility. This study underscores the substantial contribution of model-based spatial analysis to disease monitoring and lays the groundwork for defining populations at risk and implementing targeted control and prevention strategies, thus safeguarding both animal and public health.