Agricultural and Food Science (Dec 2008)

Are there indications of climate change induced increases in variability of major field crops in the northernmost European conditions?

  • P. PELTONEN-SAINIO,
  • L. JAUHIAINEN,
  • K. HAKALA

Journal volume & issue
Vol. 18, no. 3-4

Abstract

Read online

As the northern hemisphere will experience the greatest increases in temperature and indications of climatic change are already visible in the north (in the 2000s average temperatures exceeded the long-term mean), we sought to establish if there are already signs of increased variability in yield and quality of the major field crops grown under the northernmost European growing conditions: spring and winter cereals (barley Hordeum vulgare L., oat Avena sativa L., wheat Triticum aestivum L., rye Secale cereale L.), spring rapeseed (turnip rape Brassica rapa L., oilseed rape B. napus L.), pea (Pisum sativum L.) and potato (Solanum tuberosum L.). We used long-term yield datasets of FAO for Finland (1960s to date) and MTT Agrifood Research Finland (MTT) Official Variety Trial datasets on yield and quality of major field crops in Finland since the 1970s. Yield variability was exceptionally high in the 1980s and 1990s, but previously and subsequently national yields were clearly more stable. No progressive increase in yield variability was recorded. No marked and systematic changes in variability of quality traits were recorded, except for rapeseed, which exhibited reduced variability in seed chlorophyll content. This may at least partly attribute to the differences in intensity of input use and thereby responsiveness of the crops before and after 1980 and 1990 decades. We also noted that in the 2000s average temperatures were higher than in earlier decades and this was the case for all months of the growing season except June, which represents, however, the most critical phase for yield determination in most of the field crops in Finland. Also in the 2000s precipitation increased in the first three months of the growing season and thereafter decreased, but without signs of significantly increased numbers of heavy showers (extreme rain events). Hence, in general constant, increased average temperatures during the growing seasons of the 2000s were identified, but with reduced yield variability, which was partly attributable to the diminished use of inputs, especially fertilisers.;