Inorganics (Sep 2023)
Probe-Sonicated Synthesis of CuO–ZnO Hybrid Nanocomposite for Photocatalytic and Supercapacitor Applications
Abstract
An ultrasound-assisted probe sonication route effectively prepared pure CuO and two-dimensional CuO-ZnO nanocomposites (NCs) for different ratios of CuO and ZnO, and the experimental and theoretical methods investigated the structural, photocatalytic, and electrochemical properties. The XRD (X-ray diffraction) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and CuO-ZnO NCs. According to calculations, the sample’s optical energy bandgap value (Eg) for the NCs is between 1.72 and 2.15 eV. Under UV light irradiation, the photocatalytic discoloration of pure CuO and CuO-ZnO NCs on fast blue (FB) dye was assessed. Under the influence of UV light, the CuO with 10% ZnO composite degrades 83.4% of the dye, which is greater than pure CuO and other NCs. The electrochemical properties of the prepared NCs materials have been studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The specific capacitance values were found to be 248 Fg−1, 301 Fg−1, 352 Fg−1, and 277 Fg−1 for CuO, CuO + 5% ZnO, CuO + 10% ZnO, and CuO + 15% ZnO, respectively, at 1 A/g current density. Galvanostatic charge–discharge tests for these designed NCs show excellent capacitance performance in supercapacitors applications. These innovative results could be considered for expanding novel resources to scale for dual applications in photocatalysis and supercapacitors.
Keywords