Alexandria Engineering Journal (Dec 2015)
Experimental and parametric studies of a louvered fin and flat tube compact heat exchanger using computational fluid dynamics
Abstract
The present study aimed to perform the parametric analysis on thermo-hydraulic performance of a compact heat exchanger using computational fluid dynamics (CFD). The analysis has been carried out at different frontal air velocities by varying the geometrical parameters such as fin pitch, transverse tube pitch, longitudinal tube pitch, louver pitch and louver angle. The air side performance of the heat exchanger has been evaluated by calculating Colburn factor (j) and Fanning friction factor (f). The comparison of CFD results with the experimental data exhibited a good agreement and the influence of various geometrical parameters for the selected range of values on the pressure drop, heat transfer coefficient and goodness factor was analyzed. The results obtained from the analysis will be very useful to optimize the louvered fin and flat tube compact heat exchanger for better thermo-hydraulic performance analysis without the need of time consuming and expensive experimentation.
Keywords