Water (Jun 2024)
Multi-Stage Optimization of Drainage Systems for Integrated Grey–Green Infrastructure under Backward Planning
Abstract
In this study, a multi-stage planning framework was constructed by using SWMM simulation modeling and NSGA-II and applied to optimize the layout of integrated grey–green infrastructure (IGGI) under land use change and climate change scenarios. The land use change scenarios were determined based on the master plan of the study area, with imperviousness of 50.7% and 62.0% for stage 1 and stage 2, respectively. Rainfall trends for stage 1 and stage 2 were determined using Earth-E3 from the CMIP6 model. The rainfall in stage 2 increased by 14.9% from stage 1. Based on these two change scenarios, the spatial configuration of IGGI layouts with different degrees of centralization of the layout (DCL) under the two phases was optimized, with the lowest life cycle cost (LCC) as the optimization objective. The results showed that the layout with DCL = 0 had better performance in terms of LCC. The LCC of the layout with DCL = 0 was only 66.9% of that of the layout with DCL = 90.9%. In terms of Tech-R, stage 2 had better performance than stage 1. Furthermore, the average technological resilience (Tech-R) index of stage 2 was 0.8–3.4% higher than that of stage 1. Based on the LCC and Tech-R indices of all of the layouts, TOPSIS was used to compare the performance of the layouts under the two stages, and it was determined that the layout with DCL = 0 had the best economic and performance benefits. The results of this study will be useful in exploring the spatial configuration of urban drainage systems under land use change and climate change for sustainable stormwater management.
Keywords