PLoS ONE (Jan 2017)

Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry.

  • Aimen Zlitni,
  • Melissa Yin,
  • Nancy Janzen,
  • Samit Chatterjee,
  • Ala Lisok,
  • Kathleen L Gabrielson,
  • Sridhar Nimmagadda,
  • Martin G Pomper,
  • F Stuart Foster,
  • John F Valliant

DOI
https://doi.org/10.1371/journal.pone.0176958
Journal volume & issue
Vol. 12, no. 5
p. e0176958

Abstract

Read online

Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes.