Materials (Oct 2013)

Carbon Derived from Jatropha Seed Hull as a Potential Green Adsorbent for Cadmium (II) Removal from Wastewater

  • Masita Mohammad,
  • Siti Rozaimah Sheikh Abdullah,
  • Zahira Yaakob

DOI
https://doi.org/10.3390/ma6104462
Journal volume & issue
Vol. 6, no. 10
pp. 4462 – 4478

Abstract

Read online

Carbon from jatropha seed hull (JC) was prepared to study the adsorption of cadmium ions (Cd2+) from aqueous solutions under various experimental conditions. Batch equilibrium methods have been used to study the influences of the initial metal ion concentration (0.5–50 ppm), dosage (0.2–1 g), contact time (0–300 min), pH (2–7), and temperature (26–60 °C) on adsorption behavior. It has been found that the amount of cadmium adsorbed increases with the initial metal ion concentration, temperature, pH, contact time, and amount of adsorbent. A kinetic study proved that the mechanism of Cd2+ adsorption on JC followed a three steps process, confirmed by an intraparticle diffusion model: rapid adsorption of metal ions, a transition phase, and nearly flat plateau section. The experimental results also showed that the Cd2+ adsorption process followed pseudo-second-order kinetics. The Langmuir and Freundlich adsorption isotherm models were used to describe the experimental data, with the former exhibiting a better correlation coefficient than the latter (R2 = 0.999). The monolayer adsorption capacity of JC has been compared with the capacities of the other reported agriculturally-based adsorbents. It has been clearly demonstrated that this agricultural waste generated by the biofuel industry can be considered a potential low-cost adsorbent for the removal of Cd2+ from industrial effluents.

Keywords