Journal of Virus Eradication (Mar 2024)

Engagement of AKT and ERK signaling pathways facilitates infection of human neuronal cells with West Nile virus

  • Wan-Da Tang,
  • Wei-Yang Zhu,
  • Hai-Lin Tang,
  • Ping Zhao,
  • Lan-Juan Zhao

Journal volume & issue
Vol. 10, no. 1
p. 100368

Abstract

Read online

West Nile virus (WNV) is an important neurotropic virus that accounts for the emergence of human arboviral encephalitis and meningitis. The interaction of WNV with signaling pathways plays a key role in controlling WNV infection. We have investigated the roles of the AKT and ERK pathways in supporting WNV propagation and modulating the inflammatory response following WNV infection. WNV established a productive infection in neuronal cell lines originated from human and mouse. Expression of IL-11 and TNF-α was markedly up-regulated in the infected human neuronal cells, indicating elicitation of inflammation response upon WNV infection. WNV incubation rapidly activated signaling cascades of AKT (AKT-S6-4E-BP1) and ERK (MEK-ERK-p90RSK) pathways. Treatment with AKT inhibitor MK-2206 or MEK inhibitor U0126 abrogated WNV-induced AKT or ERK activation. Strong activation of AKT and ERK signaling pathways could be detectable at 24 h after WNV infection, while such activation was abolished at 48 h post infection. U0126 treatment or knockdown of ERK expression significantly increased WNV RNA levels and viral titers and efficiently decreased IL-11 production induced by WNV, suggesting the involvement of ERK pathway in WNV propagation and IL-11 induction. MK-2206 treatment enhanced WNV RNA replication accompanied with a moderate decrease in IL-11 production. These results demonstrate that engagement of AKT and ERK signaling pathways facilitates viral infection and may be implicated in WNV pathogenesis.

Keywords