AIP Advances (Dec 2020)

Ta/CoFeB/MgO analysis for low power nanomagnetic devices

  • F. Riente,
  • S. Mendisch,
  • L. Gnoli,
  • V. Ahrens,
  • M. Ruo Roch,
  • M. Becherer

DOI
https://doi.org/10.1063/9.0000013
Journal volume & issue
Vol. 10, no. 12
pp. 125229 – 125229-6

Abstract

Read online

The requirement of high memory bandwidth for next-generation computing systems moved the attention to the development of devices that can combine storage and logic capabilities. Domain wall-based spintronic devices intrinsically combine both these requirements making them suitable both for non-volatile storage and computation. Co\Pt and Co\Ni were the technology drivers of perpendicular Nano Magnetic Logic devices (pNML), but for power constraints and depinning fields, novel CoFeB\MgO layers appear more promising. In this paper, we investigate the Ta2\CoFeB1\MgO2\Ta3 stack at the simulation and experimental level, to show its potential for the next generation of magnetic logic devices. The micromagnetic simulations are used to support the experiments. We focus, first, at the experimental level measuring the switching field distribution of patterned magnetic islands, Ms via VSM and the domain wall speed on magnetic nanowires. Then, at the simulation level, we focus on the magnetostatic analysis of magnetic islands quantifying the stray field that can be achieved with different layout topologies. Our results show that the achieved coupling is strong enough to realize logic computation with magnetic islands, moving a step forward in the direction of low power perpendicularly magnetized logic devices.