Buildings (May 2023)
A Quantitative Positive Energy District Definition with Contextual Targets
Abstract
This paper presents the goals and components of a quantitative energy balance assessment framework to define Positive Energy Districts (PEDs) flexibly in three important contexts: the context of the district’s density and local renewable energy supply (RES) potential, the context of a district’s location and induced mobility, and the context of the district’s future environment and its decarbonized energy demand or supply. It starts by introducing the practical goals of this definition approach: achievable, yet sufficiently ambitious, to be inline with Paris 2050 for most urban and rural Austrian district typologies. It goes on to identify the main design parts of the definition—system boundaries, balancing weights, and balance targets—and argues how they can be linked to the definition goals in detail. In particular, we specify three levels of system boundaries and argue their individual necessity: operation, mobility, and embodied energy and emissions. It argues that all three pillars of PEDs, energy efficiency, onsite renewables, and energy flexibility, can be assessed with the single metric of a primary energy balance when using carefully designed, time-dependent conversion factors. Finally, it is discussed how balance targets can be interpreted as information and requirements from the surrounding energy system, which we identify as a “context factor”. Three examples of such context factors, each corresponding to the balance target of one of the previously defined system boundaries, operation, mobility, and embodied emissions, are presented: density (as a context for operation), sectoral energy balances and location (as a context for mobility), and an outlook on personal emission budgets (as a context for embodied emissions). Finally, the proposed definition framework is applied to seven distinct district typologies in Austria and discussed in terms of its design goals.
Keywords