Applied Sciences (Aug 2024)

The Effect of Neuromuscular Fatigue on the Spatiotemporal Coordination of Rowing

  • Carl J. Alano,
  • Chris L. Vellucci,
  • Aurora Battis,
  • Shawn M. Beaudette

DOI
https://doi.org/10.3390/app14166907
Journal volume & issue
Vol. 14, no. 16
p. 6907

Abstract

Read online

Within rowing, lower back disorders (LBDs) are common, but the mechanisms underpinning LBDs are poorly understood. Considering this, it is essential to understand how coordination and motor control change under different constraints such as ergometer rowing and fatigue. This can help better inform movement features linked to LBDs. Measurement of the continuous relative phase (CRP) is a method used to quantify body segment and joint coordination, as CRP measures the spatiotemporal control of multi-joint movement. The purpose of this study was twofold: to examine the general spatiotemporal coordination aspects of ergometer rowing in an unfatigued state, and to quantify how the spatiotemporal coordination of a rowing movement changes in response to a fatigue-inducing rowing trial. Wearable IMUs monitored 20 participants’ movement during a 2000 m ergometer row. The Borg-10 Rating of Perceived Exertion (RPE) scale was used to quantify perceived fatigue. Despite significant RPE increases across all athletes, the spatiotemporal coordination of rowing revealed prevailing strategies for the lumbar spine and lower extremity but no significant effects (α = 0.05) of fatigue on CRP outcomes (MARP, DP), cross-correlation lag (RXY), or range of motion. These findings provide further insight into rowing movements and support the idea that heterogeneous responses to fatigue may exist, requiring further study.

Keywords