Energies (Aug 2024)
Research on Energy Management Strategy for Hybrid Tractors Based on DP-MPC
Abstract
To further improve the fuel economy of hybrid tractors, an energy management strategy based on model predictive control (MPC) solved by dynamic programming (DP) is proposed, taking into account the various typical operating conditions of tractors. A coupled dynamics model was constructed for a series diesel–electric hybrid tractor under three typical working conditions: plowing, rotary tillage, and transportation. Using DP to solve for the globally optimal SOC change trajectory under each operating condition of the tractor as the SOC constraint for MPC, we designed an energy management strategy based on DP-MPC. Finally, a hardware-in-the-loop (HIL) test platform was built using components such as Matlab/Simulink, NI-Veristand, PowerCal, HIL test cabinet, and vehicle controller. The designed energy management strategy was then tested using the HIL test platform. The test results show that, compared with the energy management strategy based on power following, the DP-MPC-based energy management strategy reduces fuel consumption by approximately 7.97%, 13.06%, and 11.03%, respectively, under the three operating conditions of plowing, rotary tillage, and transportation. This achieves fuel-saving performances of approximately 91.34%, 94.87%, and 96.69% compared to global dynamic programming. The test results verify the effectiveness of the proposed strategy. This research can provide an important reference for the design of energy management strategies for hybrid tractors.
Keywords