Journal of High Energy Physics (Mar 2021)

Dimensional reduction of higher-point conformal blocks

  • Sarah Hoback,
  • Sarthak Parikh

DOI
https://doi.org/10.1007/jhep03(2021)187
Journal volume & issue
Vol. 2021, no. 3
pp. 1 – 36

Abstract

Read online

Abstract Recently, with the help of Parisi-Sourlas supersymmetry an intriguing relation was found expressing the four-point scalar conformal block of a (d − 2)-dimensional CFT in terms of a five-term linear combination of blocks of a d-dimensional CFT, with constant coefficients. We extend this dimensional reduction relation to all higher-point scalar conformal blocks of arbitrary topology restricted to scalar exchanges. We show that the constant coefficients appearing in the finite term higher-point dimensional reduction obey an interesting factorization property allowing them to be determined in terms of certain graphical Feynman-like rules and the associated finite set of vertex and edge factors. Notably, these rules can be fully determined by considering the explicit power-series representation of just three particular conformal blocks: the four-point block, the five-point block and the six-point block of the so-called OPE/snowflake topology. In principle, this method can be applied to obtain the arbitrary-point dimensional reduction of conformal blocks with spinning exchanges as well. We also show how to systematically extend the dimensional reduction relation of conformal partial waves to higher-points.

Keywords