Biomolecules (Dec 2022)

Approaches and Vectors for Efficient Cochlear Gene Transfer in Adult Mouse Models

  • Yu Zhao,
  • Longlong Zhang,
  • Daqi Wang,
  • Bing Chen,
  • Yilai Shu

DOI
https://doi.org/10.3390/biom13010038
Journal volume & issue
Vol. 13, no. 1
p. 38

Abstract

Read online

Inner ear gene therapy using adeno-associated viral vectors (AAVs) in neonatal mice can alleviate hearing loss in mouse models of deafness. However, efficient and safe transgene delivery to the adult mouse cochlea is critical for the effectiveness of AAV-mediated therapy. Here, we examined three gene delivery approaches including posterior semicircular canal (PSCC) canalostomy, round window membrane (RWM) injection, and tubing-RWM+PSCC (t-RP) in adult mice. Transduction rates and survival rates of cochlear hair cells were analyzed, hearing function was recorded, AAV distribution in the sagittal brain sections was evaluated, and cochlear histopathologic images were appraised. We found that an injection volume of 1 μL AAV through the PSCC is safe and highly efficient and does not impair hearing function in adult mice, but local injection allows AAV vectors to spread slightly into the brain. We then tested five AAV serotypes (PHP.eB, IE, Anc80L65, AAV2, and PHP.s) in parallel and observed the most robust eGFP expression in inner hair cells, outer hair cells, and spiral ganglion neurons throughout the cochlea after AAV-Anc80L65 injection. Thus, PSCC-injected Anc80L65 provides a foundation for gene therapy in the adult cochlea and will facilitate the development of inner ear gene therapy.

Keywords