Chemosensors (Jul 2024)

Urea Biosensing through Integration of Urease to the PEDOT-Polyamine Conducting Channels of Organic Electrochemical Transistors: pH-Change-Based Mechanism and Urine Sensing

  • Jael R. Neyra Recky,
  • Marjorie Montero-Jimenez,
  • Juliana Scotto,
  • Omar Azzaroni,
  • Waldemar A. Marmisollé

DOI
https://doi.org/10.3390/chemosensors12070124
Journal volume & issue
Vol. 12, no. 7
p. 124

Abstract

Read online

We present the construction of an organic electrochemical transistor (OECT) based on poly(3,4-ethylendioxythiophene, PEDOT) and polyallylamine (PAH) and its evaluation as a bioelectronic platform for urease integration and urea sensing. The OECT channel was fabricated in a one-step procedure using chemical polymerization. Then, urease was immobilized on the surface by electrostatic interaction of the negatively charged enzyme at neutral pH with the positively charged surface of PEDOH-PAH channels. The real-time monitoring of the urease adsorption process was achieved by registering the changes on the drain–source current of the OECT upon continuous scan of the gate potential during enzyme deposition with high sensitivity. On the other hand, integrating urease enabled urea sensing through the transistor response changes resulting from local pH variation as a consequence of enzymatic catalysis. The response of direct enzyme adsorption is compared with layer-by-layer integration using polyethylenimine. Integrating a polyelectrolyte over the adsorbed enzyme resulted in a more stable response, allowing for the sensing of urine even from diluted urine samples. These results demonstrate the potential of integrating enzymes into the active channels of OECTs for the development of biosensors based on local pH changes.

Keywords