Results in Engineering (Jun 2024)

Short-term load forecasting method based on secondary decomposition and improved hierarchical clustering

  • Wenting Zha,
  • Yongqiang Ji,
  • Chen Liang

Journal volume & issue
Vol. 22
p. 101993

Abstract

Read online

In the context of large-scale grid connection of new energy, short-term load forecasting is a vital and challenging task for power system to balance supply and demand. To effectively improve the forecasting accuracy, a new load forecasting method is proposed aiming to mine the characteristics of load data and study the application of artificial intelligence algorithms. In this paper, the seasonal and trend decomposition using loess (STL) method is firstly applied to decompose the load data into the trend, seasonal and residual components and the residual component with the highest complexity is further decomposed by the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) approach. Secondly, in order to reduce the number of components, the improved hierarchical clustering technique is proposed to cluster all intrinsic mode functions (IMFs) obtained by CEEMDAN into high-frequency and low-frequency components. Then, different network models are trained to get the prediction results for different components, and the total load prediction value is achieved by stacking all of them. Finally, the national demand dataset of Great Britain in 2021–2022 is used to conduct the ablation and comparative experiments. The mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the proposed method are 2.064% and 724.01 MW, respectively, which verified the effectiveness and advancement of the proposed method.

Keywords