Bioengineering (Sep 2023)

Whole-Genome Sequence and Fermentation Characteristics of <i>Enterobacter hormaechei</i> UW0SKVC1: A Promising Candidate for Detoxification of Lignocellulosic Biomass Hydrolysates and Production of Value-Added Chemicals

  • Santosh Kumar,
  • Eric Agyeman-Duah,
  • Victor C. Ujor

DOI
https://doi.org/10.3390/bioengineering10091090
Journal volume & issue
Vol. 10, no. 9
p. 1090

Abstract

Read online

Enterobacter hormaechei is part of the Enterobacter cloacae complex (ECC), which is widespread in nature. It is a facultative Gram-negative bacterium of medical and industrial importance. We assessed the metabolic and genetic repertoires of a new Enterobacter isolate. Here, we report the whole-genome sequence of a furfural- and 5-hydroxymethyl furfural (HMF)-tolerant strain of E. hormaechei (UW0SKVC1), which uses glucose, glycerol, xylose, lactose and arabinose as sole carbon sources. This strain exhibits high tolerance to furfural (IC50 = 34.2 mM; ~3.3 g/L) relative to Escherichia coli DH5α (IC50 = 26.0 mM; ~2.5 g/L). Furfural and HMF are predominantly converted to their less-toxic alcohols. E. hormaechei UW0SKVC1 produces 2,3-butanediol, acetoin, and acetol, among other compounds of industrial importance. E. hormaechei UW0SKVC1 produces as high as ~42 g/L 2,3-butanediol on 60 g/L glucose or lactose. The assembled genome consists of a 4,833,490-bp chromosome, with a GC content of 55.35%. Annotation of the assembled genome revealed 4586 coding sequences and 4516 protein-coding genes (average length 937-bp) involved in central metabolism, energy generation, biodegradation of xenobiotic compounds, production of assorted organic compounds, and drug resistance. E. hormaechei UW0SKVC1 shows considerable promise as a biocatalyst and a genetic repository of genes whose protein products may be harnessed for the efficient bioconversion of lignocellulosic biomass, abundant glycerol and lactose-replete whey permeate to value-added chemicals.

Keywords