Catalysts (Oct 2018)

Characterization of a New Glyoxal Oxidase from the Thermophilic Fungus Myceliophthora thermophila M77: Hydrogen Peroxide Production Retained in 5-Hydroxymethylfurfural Oxidation

  • Marco Antonio Seiki Kadowaki,
  • Mariana Ortiz de Godoy,
  • Patricia Suemy Kumagai,
  • Antonio José da Costa-Filho,
  • Andrew Mort,
  • Rolf Alexander Prade,
  • Igor Polikarpov

DOI
https://doi.org/10.3390/catal8100476
Journal volume & issue
Vol. 8, no. 10
p. 476

Abstract

Read online

Myceliophthora thermophyla is a thermophilic industrially relevant fungus that secretes an assortment of hydrolytic and oxidative enzymes for lignocellulose degradation. Among them is glyoxal oxidase (MtGLOx), an extracellular oxidoreductase that oxidizes several aldehydes and α-hydroxy carbonyl substrates coupled to the reduction of O2 to H2O2. This copper metalloprotein belongs to a class of enzymes called radical copper oxidases (CRO) and to the “auxiliary activities” subfamily AA5_1 that is based on the Carbohydrate-Active enZYmes (CAZy) database. Only a few members of this family have been characterized to date. Here, we report the recombinant production, characterization, and structure-function analysis of MtGLOx. Electron Paramagnetic Resonance (EPR) spectroscopy confirmed MtGLOx to be a radical-coupled copper complex and small angle X-ray scattering (SAXS) revealed an extended spatial arrangement of the catalytic and four N-terminal WSC domains. Furthermore, we demonstrate that methylglyoxal and 5-hydroxymethylfurfural (HMF), a fermentation inhibitor, are substrates for the enzyme.

Keywords