Co-precipitated Ni-Mg-Al hydrotalcite-derived catalyst promoted with vanadium were synthesized with different V loadings (0–4 wt%) and studied in CO2 methanation. The promotion with V significantly changes textural properties (specific surface area and mesoporosity) and improves the dispersion of nickel. Moreover, the vanadium promotion strongly influences the surface basicity by increasing the total number of basic sites. An optimal loading of 2 wt% leads to the highest activity in CO2 methanation, which is directly correlated with specific surface area, as well as the basic properties of the studied catalysts.