IUCrJ (Mar 2015)

Solvent-vapour-assisted pathways and the role of pre-organization in solid-state transformations of coordination polymers

  • James S. Wright,
  • Iñigo J. Vitórica-Yrezábal,
  • Harry Adams,
  • Stephen P. Thompson,
  • Adrian H. Hill,
  • Lee Brammer

DOI
https://doi.org/10.1107/S2052252515000147
Journal volume & issue
Vol. 2, no. 2
pp. 188 – 197

Abstract

Read online

A family of one-dimensional coordination polymers, [Ag4(O2C(CF2)2CF3)4(phenazine)2(arene)n]·m(arene), 1 (arene = toluene or xylene), have been synthesized and crystallographically characterized. Arene guest loss invokes structural transformations to yield a pair of polymorphic coordination polymers [Ag4(O2C(CF2)2CF3)4(phenazine)2], 2a and/or 2b, with one- and two-dimensional architectures, respectively. The role of pre-organization of the polymer chains of 1 in the selectivity for formation of either polymorph is explored, and the templating effect of toluene and p-xylene over o-xylene or m-xylene in the formation of arene-containing architecture 1 is also demonstrated. The formation of arene-free phase 2b, not accessible in a phase-pure form through other means, is shown to be the sole product of loss of toluene from 1-tol·tol [Ag4(O2C(CF2)2CF3)4(phenazine)2(toluene)]·2(toluene), a phase containing toluene coordinated to Ag(I) in an unusual μ:η1,η1 manner. Solvent-vapour-assisted conversion between the polymorphic coordination polymers and solvent-vapour influence on the conversion of coordination polymers 1 to 2a and 2b is also explored. The transformations have been examined and confirmed by X-ray diffraction, NMR spectroscopy and thermal analyses, including in situ diffraction studies of some transformations.

Keywords