Nature Communications (Jul 2022)

Lead federated neuromorphic learning for wireless edge artificial intelligence

  • Helin Yang,
  • Kwok-Yan Lam,
  • Liang Xiao,
  • Zehui Xiong,
  • Hao Hu,
  • Dusit Niyato,
  • H. Vincent Poor

DOI
https://doi.org/10.1038/s41467-022-32020-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Designing energy-efficient computing solution for the implementation of AI algorithms in edge devices remains a challenge. Yang et al. proposes a decentralized brain-inspired computing method enabling multiple edge devices to collaboratively train a global model without a fixed central coordinator.