BMC Complementary and Alternative Medicine (Dec 2010)

Protective effect of the daming capsule on impaired baroreflexes in STZ-induced diabetic rats with hyperlipoidemia

  • Lu Guan-Yi,
  • Sun Li-Hua,
  • Wang Ning,
  • Qiao Guo-Fen,
  • Zhang Rong,
  • Wang Li-Hong,
  • Ai Jing,
  • Sun Chao,
  • Yang Bao-Feng

DOI
https://doi.org/10.1186/1472-6882-10-80
Journal volume & issue
Vol. 10, no. 1
p. 80

Abstract

Read online

Abstract Background The Daming capsule (DMC) is a traditional Chinese medicine used to treat hyperlipoidemia. Both clinic trials and studies on animal models have demonstrated that DMC is beneficial against diabetic symptoms. Impairment of the baroreflex can cause life-threatening arrhythmias and sudden cardiac death in patients with diabetes mellitus (DM). This study was designed to elucidate the effects of DMC on baroreflexes in streptozocin (STZ)-induced diabetic rats with hyperlipoidemia. Methods Wistar rats were randomly divided into three groups: untreated controls, rats pretreated STZ and high lipids (a diabetes model or DM rats), and DM rats treated with DMC. The baroreflex sensitivity was examined during intravenous injection of phenylephrine (PE) or sodium nitroprusside (SNP) and quantified by the change in heart rate over the change in mean arterial blood pressure (ΔHR/ΔMABP). Morphological remodeling of baroreceptors was analyzed by transmission electron microscopy (TEM). The mRNA levels and expression of GluR2 and a GABAA receptor subunit were measured by quantitative RT-PCR and Western blotting. Results Compared to untreated DM rats, DMC significantly elevated the ratio of ΔHR/ΔMABP by enhancing the compensatory reduction in HR (-ΔHR) in response to PE-induced hypertension (+ΔMABP) (P P P A receptor expression. Conclusion The Daming capsule partially reversed the parasympathetic baroreflex impairment observed in STZ-induced diabetic rats with hyperlipoidemia. Treatment with DMC also prevented the degeneration of neurons and myelinated axons in the brain stem NAm and reversed the down-regulation of GluR2 mRNA. Rescue of NAm function may contribute to the medicinal properties of DMC in diabetic rats.