Crystals (Aug 2022)

Calcium Carbonate Originating from Snail Shells for Synthesis of Hydroxyapatite/L-Lysine Composite: Characterization and Application to the Electroanalysis of Toluidine Blue

  • Jimmy Julio Kouanang Ngouoko,
  • Kevin Yemele Tajeu,
  • Cyrille Ghislain Fotsop,
  • Arnaud Kamdem Tamo,
  • Giscard Doungmo,
  • Ranil Clément Tonleu Temgoua,
  • Théophile Kamgaing,
  • Ignas Kenfack Tonle

DOI
https://doi.org/10.3390/cryst12091189
Journal volume & issue
Vol. 12, no. 9
p. 1189

Abstract

Read online

Snail shells (Anadora Fulica) calcined at different temperatures were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermal analyses (TG-DTG), scanning electron microscopy (SEM) and N2 adsorption–desorption experiments (surface area measurements were found using the coupled BET/BJH method). The principal objective was to identify different forms of calcium carbonate and calcium hydroxide in snail shells as raw materials. The calcium hydroxide thus obtained was used in the synthesis of the hydroxyapatite/L-lysine (HA/Lys) composite. The composite used to chemically modify a glassy carbon electrode (GCE) was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It appeared that the developed sensor Lys/HA/GCE facilitated electronic transfer compared to the pristine electrode. In a strongly acid medium, this surface protonated and therefore became positively charged, which allowed it to have a good affinity with [Fe(CN)6]3-. An application in toluidine blue (TB) electroanalysis in the phosphate buffer was carried out. Optimal sensor performances were obtained using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The performance of the sensor was determined in the concentration range 1 to 10 µM of TB, and the limit of detection (LOD) obtained by the S/N = 3 method was 2.78 × 10−7 M. The sensor was also used to detect the TB in spring water at 96.79% recovery.

Keywords